SALUS SECURITY

o

CODE
SECURITY
ASSESSMENT

VANILLA FINANCE

JUL 2025

Overview

Project Summary

Language: Solidity
Repository:

Name: Vanilla Finance - MemePerps
Platform: The BSC Blockchain

o https://github.com/VanillaDevTeam/MemePerps

e Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name Vanilla Finance - MemePerps

Version v4

Type Solidity

Dates Aug 02 2025

Logs Jul 18 2025; Jul 22 2025; Jul 23 2025;
Aug 02 2025

Vulnerability Summary

Total High-Severity issues 4
Total Medium-Severity issues 4
Total Low-Severity issues 4
Total informational issues 3
Total 15

Contact

https://github.com/VanillaDevTeam/MemePerps

E-mail: support@salusec.io

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive
information at risk, or is reasonably likely to lead to
catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

The issue puts a subset of users’ sensitive
information at risk, would be detrimental to the
client’s reputation if exploited, or is reasonably likely

to lead to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited
on a recurring basis, or is a risk that the client has
indicated is low impact in view of the client’s business

circumstances.

Informational

The issue does not pose an immediate risk, but is
relevant to security best practices or defense in
depth.

Content

Introduction
1.1 About SALUS
1.2 Audit Breakdown
1.3 Disclaimer
Findings
2.1 Summary of Findings
2.2 Notable Findings

1.
. Unvalidated params enables bad debt and draining of protocol-held balance

O 00 3 N U B W N

Signature not bound to parameters enables forged and replay Attacks

. The whitelist pool will be drained

. Liquidity manipulation attack

. Inflation attack

. Pools remain active after token de-whitelisting, with no pause/close mechanism
. Lack of slippage check in closePositionWithData

. Centralization risk

. Create pool can be front-runing

10. Unit mismatch in getQuoterAmountln

11. Inconsistent decimal handling

12. Use a strict less than sign in getAllPositions

2.3 Informational Findings

13. Gas optimization suggestions

14. Use of floating pragma

15. Callback adaptation error
Appendix
Appendix 1 - Files in Scope

[B NV IV, R | B N N A S

N NN DN —m = = ke e e e e
N —m © O O 00 9 O L A W N — O

[\®)
N

Introduction

1.1 About SALUS

At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t. me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown

The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):
e Risky external calls
Integer overflow/underflow
Transaction-ordering dependence
Timestamp dependence
Access control
Call stack limits and mishandled exceptions
Number rounding errors
Centralization of power
Logical oversights and denial of service
Business logic specification
Code clones, functionality duplication

1.3 Disclaimer

Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

Findings

2.1 Summary of Findings

ID |Title Severity Category Status
1 Signature not bound to parameters enables High Business Logic | Resolved
forged and replay Attacks
2 | Unvalidated params enables bad debt and High Data Validation | Mitigated
draining of protocol-held balance
3 | The whitelist pool will be drained High Business logic Resolved
4 | Liquidity manipulation attack High Business logic Mitigated
5 Medium Business Logic | Resolved
6 Medium Configuration Resolved
7 Medium Data Validation | Resolved
8 Medium Centralization Resolved
9 | Create pool can be front-runing Low Front-running Resolved
10 | Unit mismatch in getQuoterAmountin Low Numerics Resolved
11 | Inconsistent decimal handling Low Inconsistency Resolved
12 | Use a strict less than sign in getAllPositions Low Business Logic | Resolved
13 | Gas optimization suggestions Informational | Gas optimization | Resolved
14 | Use of floating pragma Informational | Configuration Resolved
15 | Callback adaptation error Informational | Business Logic | Resolved

2.2 Notable Findings

Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Signature not bound to parameters enables forged and replay
Attacks

Severity: High Category: Business logic

Target:
- contracts/leverage/facets/LeverageTradingOperationsFacet.sol

Description

The functions *_decodeOpenPositionParams()’, ~_decodeClosePositionParams()’,

*_decodelLiquidatePositionParams()’, each split the caller-supplied signedData into "(bytes32
message, uint8 v, bytes32 r, bytes32 s, <Params> params)’, verifying only that “(v,r,s)” form a valid

signature over the 32-byte message

contracts/leverage/facets/LeverageTradingOperationsFacet.sol:L1015-L1088

function _decodeOpenPositionParams(
bytes calldata signedData
) internal view returns (OpenPositionParams memory) {
(
bytes32 message,
uint8 v,
bytes32r,
bytes32 s,
OpenPositionParams memory params
) = abi.decode(
signedData,
(bytes32, uint8, bytes32, bytes32, OpenPositionParams)

)

bytes32 ethSignedMessageHash = keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", message)
);
address signer = ecrecover(ethSignedMessageHash, v, r, s);
if ((hasRole(DATA_PROVIDER_ROLE, signer))
revert Error.Unauthorized();

return params;

}

function _decodeClosePositionParams(bytes calldata signedData) internal view
returns (ClosePositionParams memory) {...}

function _decodeLiquidatePositionParams(bytes calldata signedData) internal view

returns (LiquidatePositionParams memory) {...}

The contract never verifies that the message is derived from, or otherwise commits to, the
decoded parameters.

As a result, an attacker with access to any previously published signature from a whitelisted
"DATA_PROVIDER_ROLE" address can craft malicious signedData packets by:

1. Re-use a valid “(message, v, r, s)” tuple.

2. Append arbitrary “OpenPositionParams’, "ClosePositionParams’, or
“LiquidatePositionParams’.

3. Replaying the same signature indefinitely, since there is no nonce or deadline
mechanism in place to prevent reuse..

Recommendation
Bind signature to “params’, add replay protection('nonce’, “deadline’), adopt EIP-712 typed-

data signatures so the whole struct is signed in an unforgeable way.

Status

The team has resolved this issue in commit 373f490.

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

2. Unvalidated params enables bad debt and draining of protocol-
held balance

Severity: High Category: Data Validation

Target:
- contracts/leverage/facets/LeverageTradingOperationsFacet.sol

Description

In the “openPositionwithData(), "closePositionWithData()", and liquidatePositionWithData()’
functions, the protocol accepts off-chain signed structs (‘OpenPositionParams’,
"ClosePositionParams’, "LiquidatePositionParams™). However, many of the economically
critical fields in these structs are only subjected to basic sanity checks on-chain.

contracts/leverage/facets/LeverageTradingOperationsFacet.sol:L148-L179

struct OpenPositionParams {
address marginToken;
address targetToken;
uint256 marginAmount;
uint256 maintenanceMarginRate;
uint256 borrowAmount;
uint256 fee;
uint256 swapAmount;
uint256 leverageMultiplier;
uint256 minTargetTokenAmount;
uint256 slippage;
uint256 positionld;
bool longOrShort;
uint256 deadline;

}

struct ClosePositionParams {
uint256 positionld;
uint256 slippage;
uint256 interest;
bytes interestHistory;
uint256 deadline;

}

struct LiquidatePositionParams {
uint256 positionld;
uint256 liquidationPenalty;
uint256 liquidatorRewardRate;
uint256 totallnterest;
bytes interestHistory;
uint256 deadline;

Coupled with the previously reported issue “Signature Not Bound to Parameters enables
forged and replay Attacks” (any valid “(v,r,s)" can be reused against arbitrary structs), an

attacker can Inject unlimited fees, exaggerate leverageMultiplier, and perform other
unauthorized manipulations, for example:

When opening a position, the untrusted “swapAmount™ is used at

10

When opening a position, the untrusted *swapAmount" is used in the following critical
functions: "Utils.forceApprove(tokenin, dexRouter, swapAmount)’, “dexRouter.exactinputSingle...
amountln: swapAmount ...)’,. However, there is no invariant that ties “swapAmount™ to the sum of
(margin + borrow) for long positions or to the borrowed target amount for short positions.
Additionally, there is no balance delta check or cap, and signatures are not bound to
parameters (see separate High finding). This allows attackers to supply arbitrary values,
exploiting the system.

Attack A — Under-Swap to Manufacture Bad Debt (Insolvency)

An attacker can borrow a large amount but set a minuscule “swapAmount’. Most of the
borrowed tokens remain idle in the contract, never being swapped into the position. As a
result, the accounting records a large “borrowedAmount™ but only a tiny “actualTokenAmount’.
Upon position closure, repayment is calculated based on the small traded exposure, leaving
the position in NegativeEquity. The lending pool absorbs the shortfall while the borrowed
tokens remain stranded in the contract. Repeating this attack can drain the pool’s solvency.

Attack B — Over-Swap to Drain Protocol-Held Balances

An attacker can open a small position while supplying a disproportionately large
“swapAmount’ , potentially up to the contract’s full balance. The *_openPosition™ function will
approve and execute the entire trade, resulting in a large “actualTargetAmount™ being attributed
to the attacker’s position. Upon closing, only the small recorded borrow is repaid, and the
excess proceeds are returned to the attacker as "marginReturned’, allowing them to effectively
loot protocol-owned or other users' residual funds.

Recommendation

Add on chain validation for these params.

Status

The team has mitigated this issue in commit 2a91761.

11

https://github.com/VanillaDevTeam/MemePerps/commit/2a917613623a95e6d1a202dcccb57bd01beed8fb

3. The whitelist pool will be drained

Severity: High Category: Business logic

Target:
- contracts/leverage/facets/LeverageTradingOperationsFacet.sol

Description

In the "LeverageTradingOperationsFacet™ contract, the “createToken()” function will select the
correct fund pool for subsequent borrowing and trading operations according to the
direction selected by the user (long/short). But this only checks one token.

contracts/leverage/facets/LeverageTradingOperationsFacet.sol:L259-L.300

function openPositionWithData(...){

uint256 poolld;
if (params.longOrShort) {

poolld = Its.stakingContract.findPoolByToken(actualMarginToken);
}else {

poolld = Its.stakingContract.findPoolByToken(params.targetToken);
}

if (poolld == type(uint256).max) revert("Pool not supported");

Attach Scenario

1. The protocol adds "USDT" to white list.

2. Attacker builds a "FAKE-USDT" pool with a small supply ratio of 1 "FAKE" : 100 "USDT".

3. Attacker opens a 10U ten-times leveraged ‘FAKE" long position. The protocol will
swap 100 *uUsDT" for “FAKE and the "USDT" supply of the pool will increase to 200
"USDT .

4. The attacker uses "FAKE" tokens to drain the pool. The profit is 100U, the cost is
10U, resulting in a net gain of 90U

Through the above method, the attacker can drain all whitelisted tokens.

Recommendation

Add a check for ensuring both *marginToken™ and “targetToken" are on the whitelist.

Status

The team has resolved this issue in commit 373f490.

12

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

4. Liquidity manipulation attack

Severity: High Category: Business logic

Target:

- contracts/leverage/PriceFeed.sol

Description

The contract’s “findPool()" function finds the pool with the highest liquidity between tokenA
and tokenB across different fee tiers in the PancakeSwap V3 factory and returns its
address. This introduces a potential issue where the pool used to open a position differs
from the one used to close it, potentially enabling price manipulation.

contracts/leverage/PriceFeed.sol:L82-L106

function findPool(...)

{

}

address[] memory pools = new address[](4);

pools[0] = IPancakeV3Factory(factory).getPool
pools[1] = IPancakeV3Factory(factory).getPool
pools[2] = IPancakeV3Factory(factory).getPool
pools[3] = IPancakeV3Factory(factory).getPool

tokenA, tokenB, 100);
tokenA, tokenB, 500);
tokenA, tokenB, 2500);
tokenA, tokenB, 10000);

= ———

uint256 bestLiquidity = 0;
address bestPool = address(0);
for (uint256 i = 0; i < pools.length; i++) {
if (pools[i] I= address(0)) {
uint256 liquidity = IPancakeV3Pool(pools[i]).liquidity();
if (liquidity > bestLiquidity) {
bestLiquidity = liquidity;
bestPool = pools[i];
}
}
}

return bestPool;

Attach Scenario

1. The "Meme-USDT" has one uninitialized pool and three pools with existing liquidity.

2. Attacker initialize the pool at a high price and open long positions at the same time.

3. By leveraging the flash loan feature of the pools, the attacker combines the liquidity
of three pools to create one pool with high liquidity.

4. The attacker closes the position using the manipulated pool for settlement, realizes
the profit, and repays the flash loans from the three pools

Recommendation

Add a mechanism to ensure price consistency by using the same pool for both opening and
closing positions.

13

Status

The team has mitigated this issue in commit 373f490.

14

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

5. Inflation attack

Severity: Medium Category: Business Logic

Target:
- contracts/staking/facets/StackOperationFacet.sol

Description

The protocol rounds down for “unstake()* and *_stake()" functions. For an empty pool, the
malicious user can manipulate it to cause inflation attacks. Specifically, the normal ratio of
share to amount will not exceed 1:2.

The attacker also can transfer to the contract directly, creating inconsistency between the
contract's internal and recorded balances.

The two ways can lead to Inflation attacks which makes this ratio very large.

contracts/staking/facets/StackOperationFacet.sol:L233-323

function unstake(uint256 _pid, uint256 _amount) external returns (uint256) {

uint256 balance = _balanceAndBorrowedOfPool(_pid);
uint256 userShares = _amount.mulDiv(user.shares, user.amount);
uint256 normalizedRewards = calculateAmount(
userShares,
pool.totalShares,
balance
)

}

function _stake(uint256 _pid, uint256 _amount, address _staker) internal {

if (pool.totalStaked == 0) {
shares = normalizedAmount;
}else {
shares = calculateShares(
normalizedAmount,
totalStaked,
pool.totalShares
)
}

Due to the pool lack of lending attack vector, the severity is medium.

Recommendation

It is recommended to ensure that markets are never empty by minting small share (or
equivalent) balances at the time of pool creation, preventing the rounding error being used
maliciously. Or use one-to-one minting when “totalShares™ and "totalStaked" are at smaller
values.

15

Status

The team has resolved this issue in commit 373f490.

6. Pools remain active after token de-whitelisting, with no
pause/close mechanism

Severity: Medium Category: Configuration

Target:
- contracts/staking/facets/StackOperationFacet.sol

Description

“StackOperationFacet.batchRemoveFromWhitelist()” removes a token from the
‘whitelistTokensArray, but does not touch the associated pool state:

1. “s.pools[pidlisActive’ is left true.

2. ’s.tokenToPoolld[_token]” and “s.poolExists[_token] remain set.

3. Ts.creatorPoolsl...]” still references the pool.

4. No call path marks the pool disabled or prevents subsequent use.

As a result, after governance removes a token, users can continue to route leverage trades
through the stale pool.

Recommendation

Update pool state variables when de-whitelisting a token and add checks in stake, unstake,
borrow, and repay, e.g. require(pool.isActive && isTokenWhitelisted(pool.token))'.

Status

The team has resolved this issue in commit 373f490.

16

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01
https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

7. Lack of slippage check in closePositionWithData

Severity: Medium Category: Data Validation

Target:
- contracts/staking/facets/StackOperationFacet.sol

Description

The “ClosePositionParams’ struct includes a “slippage’ field, but “closePositionwithData()" never
uses it to constrain the on-chain swap:

contracts/staking/facets/StackOperationFacet.sol:L164-L170

struct ClosePositionParams {
uint256 positionld;
uint256 slippage;
uint256 interest;
bytes interestHistory;
uint256 deadline;

}

contracts/staking/facets/StackOperationFacet.sol:L480-L642

function closePositionWithData(bytes calldata data)}{
if (position.openinfo.longOrShort) {
allMarginAmount = Its.dexRouter.exactinputSingle(
ISwapRouter.ExactinputSingleParams({
tokenlIn: tokenln,
tokenOut: tokenOut,
fee: fee,
recipient: address(this),
amountin: swapAmount,
amountOutMinimum: 0,
sqrtPriceLimitX96: 0,
deadline: params.deadline
})
);
}else {
allMarginAmount = Its.dexRouter.exactOutputSingle(
ISwapRouter.ExactOutputSingleParams({
tokenlIn: tokenln,
tokenOut: tokenOut,
fee: fee,
recipient: address(this),
amountOut: swapAmount,
amountinMaximum: type(uint256).max,
sqrtPriceLimitX96: O,
deadline: params.deadline

Recommendation

Add slippage checks in the “closePositionwithData()® function.

17

Status

The team has resolved this issue in commit 373f490.

18

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

8. Centralization risk

Severity: Medium Category: Centralization

Target:
- contracts/staking/facets/StackOperationFacet.sol

Description

The *StackOperationFacet™ contract has privileged accounts. These privileged accounts can
borrow all tokens from the contracts without any collateral by using the “borrow()" function,
and change any user's share by using the “updateUserShares()"" functions.

If privileged accounts' private key or admin’s is compromised, an attacker can steal all the
tokens in the contract.

If the privileged accounts are plain EOA accounts, this can be worrisome and pose a risk to
the other users.

Recommendation

We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

The team has resolved this issue in commit 373490 and state that a multi-signature wallet
will be used on the official network.

19

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

9. Create pool can be front-runing

Severity: Low Category: Front-running

Target:
- contracts/staking/facets/StackOperationFacet.sol

Description

In the StackOperationFacet contract, once the contract owner calls “addTokenToWhitelist()’
function:

contracts/staking/facets/StackOperationFacet.sol:L102-L104

function addTokenToWhitelist(address _token) external onlyOwner {
_addTokenToWhitelistArray(_token);

}

An attacker can monitor the mempool for the transaction and then call the “stakeByToken()’
function, front-run the subsequently expected "createPool()’ call by the contract owner.

contracts/staking/facets/StackOperationFacet.sol:L201-L.225

function stakeByToken(
address _token,
uint256 _amount
) external returns (uint256) {
require(_amount > 0, "Amount must be greater than 0");
if (_token == address(0)) {
_token = Constants.WETH_ADDRESS;
}
require(
IStackQueryFacet(address(this)).isTokenWhitelisted(_token),
"Token not whitelisted"
)
uint256 pid = IStackQueryFacet(address(this)).findPoolByToken(_token);

if (pid == type(uint256).max) {
pid = _createPool(_token, msg.sender);

}
_stake(pid, _amount, msg.sender);
return pid;

}

Therefore, the attacker will become the pool creator, although there are no privileges for
creator.

Recommendation

Add an “onlyowner™ modifier on the internal "_createPool()", or restrict the create pool path in
“stakeByToken()".

Status

20

The team has resolved this issue in commit 373f490.

21

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

10. Unit mismatch in getQuoterAmountin

Severity: Low Category: Numerics

Target:
- contracts/leverage/facets/LeverageTradingQueryFacet.sol

Description

“getQuoterAmountin()” queries “IQuoter.quoteExactOutputSingle” with “tokenin = baseToken™ and
“tokenOut = quoteToken™. The quoter returns the raw “amountin® denominated in "baseToken’
decimals. However, the code normalizes this value using “quoteToken™ decimals:

contracts/leverage/facets/LeverageTradingQueryFacet.sol:L163-L202

function getQuoterAmountin(
address baseToken,
address quoteToken,
uint256 amountOut

) external returns (uint256 amountin) {

(amountln, , ,) = IQuoter(lts.quoter).quoteExactOutputSingle(
IQuoter.QuoteExactOutputSingleParams({
tokenlIn: baseToken,
tokenOut: quoteToken,
fee: fee,
amount: Utils.denormalizeTokenAmount(quoteToken, amountOut),
sqgrtPriceLimitX96: 0
})
)i

amountln = Utils.normalizeTokenAmount(quoteToken, amountin);

return amountin;

}

If the two tokens have different decimal counts (e.g., 18 vs 6), the normalized result is scaled
incorrectly.

Recommendation

Normalize the returned amountin using "baseToken™ decimals.

Status

The team has resolved this issue in commit 373f490 and state that the function is called
externally, so the original precision of the currency is retained.

22

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

11. Inconsistent decimal handling

Severity: Low Category: Inconsistency

Target:
- contracts/leverage/facets/LeverageTradingQueryFacet.sol

Description

“getQuoterAmountOut()” is intended to return how much “baseToken™ you would receive for
supplying “amountin™ units of “quoteToken'. However, there is no decimal normalization or
denormalization.

contracts/leverage/facets/LeverageTradingQueryFacet.sol:L113-L161

function getQuoterAmountOut(
address baseToken,
address quoteToken,
uint256 amountin
) external returns (Uint256) {
(uint256 amountOuyt, , ,) = IQuoter(lts.quoter).quoteExactinputSingle(
IQuoter.QuoteExactinputSingleParams({
tokenlIn: quoteToken,
tokenOut: baseToken,
fee: fee,
amountin: amountin,
sqrtPriceLimitX96: O
bl
)
Utils.clearAllowance(
IERC20(quoteToken),
address(Its.quoter)
)
return amountOut;

}

Unlike “getQuoterAmountin()’, which at least attempts to denormalize/normalize units, this
function passes amountln straight through to the quoter.

Additionally, these functions should be read-only; approving tokens for a third-party contract
just to compute a quote is unnecessary and dangerous.

Recommendation

Remove all token approvals from quote functions, and add the normalization and
denormalization.

Status

The team has resolved this issue in commit 373f490 and state that the function is called
externally, so the original precision of the currency is retained.

23

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

24

S SALUS

12. Use a strict less than sign in getAllPositions

Severity: Low Category: Business Logic
Target:
- contracts/leverage/facets/LeverageTradingQueryFacet.sol

Description

Loop excludes “endindex” because of "<" instead of "<=":

contracts/leverage/facets/LeverageTradingQueryFacet.sol:L260-L291

function getAllPositions(uint256 startindex, uint256 endindex) external view
returns (LibLeverageTradingStorage.Position[] memory positions)

{

if (endIndex >= Its.positionlds.length()) {
endindex = Its.positionlds.length() - 1;

}

uint256 positionsCount = endindex - startindex + 1;
positions = new LibLeverageTradingStorage.Position[](positionsCount);

for (uint256 i = startindex; i < endIndex; i++) {

positionsli] = Its.positions][lts.positionlds.at(i)];

}

return positions;
}

Recommendation
Use “<=" instead of "<'.
Status

The team has resolved this issue in commit 373f490.

25

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

2.3 Informational Findings

13. Gas optimization suggestions

Severity: Informational Category: Gas Optimization

Target:
- contracts/staking/facets/StackOperationFacet.sol

- contracts/leverage/PriceFeed.sol

Description

Memory reading saves more gas than storage reading multiple times when the state is not
changed. So caching the storage variables in memory and using the memory instead of
storage reading is effective. Cache array length outside of the loop can save gas.

contracts/staking/facets/StackOperationFacet.sol:L115
for (uint256 i = 0; i < _tokens.length; i++) {
contracts/staking/facets/StackOperationFacet.sol:L129
for (uint256 i = 0; i < _tokens.length; i++) {
contracts/leverage/PriceFeed.sol:L96
for (uint256 i = 0; i < pools.length; i++) {

In the “closePositionWithData()', the code "position.closelnfo.isSet = true” is executed twice, and
should be removed.

contracts/staking/facets/StackOperationFacet.sol:L543-L.749

function closePositionWithData(bytes calldata data) external nonReentrant
returns (uint256 marginReturned, int256 realizedProfitLoss)}{

position.closelnfo.isSet = true;

position.closelnfo.isSet = true;

Recommendation

Consider using the above suggestions to save gas.

Status

The team has resolved this issue in commit 373f490.

26

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

14. Use of floating pragma

Severity: Informational Category: Configuration

Target:
- Al

Description
pragma solidity 20.8.28;
The QuillToken uses a floating compiler version *0.8.28.

Using a floating pragma ~0.8.28 statement is discouraged, as code may compile to different
bytecodes with different compiler versions. Use a locked pragma statement to get a
deterministic bytecode. Also use the latest Solidity version to get all the compiler features,
bug fixes and optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status

The team has resolved this issue in commit 373f490.

27

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

15. Callback adaptation error

Severity: Informational Category: Business Logic

Target:
- contracts/leverage/facets/LeverageTradingOperationsFacet.sol

Description

During position opening, closing, and liquidation operations, the protocol performs token
swaps with a call flow of "v3SwapRouter.exactOutputSingle -> pool.swap ->
V3SwapRouter.pancakeV3SwapCallback’, without triggering any " LeverageTradingOperationsFacet’
contract’s callback functions. This same situation also applies to Uniswap V3.

contracts/leverage/facets/LeverageTradingOperationsFacet.sol:L998-11013

function pancakeV3SwapCallback(
int256 amount0ODelta,
int256 amount1Delta,
bytes calldata data
) external {
PancakeHelper.pancakeV3SwapCallback(amountODelta, amount1Delta, data);

}

// 1SwapCallback implementation
function uniswapV3SwapCallback(
int256 amountODelta,
int256 amount1Delta,
bytes calldata data
) external {
PancakeHelper.pancakeV3SwapCallback(amountODelta, amount1Delta, data);

}

Recommendation

Remove the Callback function.

Status

The team has resolved this issue in commit 373f490.

28

https://github.com/VanillaDevTeam/MemePerps/commit/373f4903bca7325b8ad469f90d633dc4075bde01

Appendix

Appendix 1 - Files in Scope

This audit covered the following files in commit 60818ee:

File SHA-1 hash
contracts/Constants.sol 5a269719002f73d14291ef83ab700dd2c27a5ea4
contracts/Utils.sol 84e7d7d7d4eff1e729f7346d34c4d4615928d4d6

contracts/leverage/LeverageTradingDiamond.sol 699822fc1feb5fd0da6fc59f5c9e06cec1559efd
contracts/leverage/LeverageTradinglnit.sol 3b9899b0374a463e3fb2a8e88b6450403e1b97c1

contracts/leverage/LibLeverageTradingStorage.sol |0ef11b42b8a2d06c6644c2890bf997e207906e2f

contracts/leverage/PancakeHelper.sol 8119ea74608e59b4edb62027e4a4ebf6f4fe1d7c
contracts/leverage/PriceFeed.sol 0a28febf9a360dc3bed054903847881199df9769
contracts/leverage/facets/LeverageTradingQueryFa

cet.sol 6bb8940cbb123bc3a08b920e25192ce9f14f8e5e
contracts/leverage/facets/LeverageTradingOperatio

nsFacet.sol ff68aecad4125c3aaf9771af83033c0dd10744851

contracts/staking/MultiTokenStakingDiamond.sol 3bcObfe2ac8e18210c271b625685ccd0b4217916
contracts/staking/LibMultiTokenStakingStorage.sol |5e276b3caeddd39278b2d3d12da660235730a6ec
contracts/staking/MultiTokenStakinglInit.sol 24fddfb4b448191e2d5f023b2f0187c4d53c9cbe
contracts/staking/facets/StackQueryFacet.sol 575fb45d14905394bb621022f68519329c9ca2dd

contracts/staking/facets/StackOperationFacet.sol 2006a04c099d81c6d93f328652f93592fdab92d4

29

https://github.com/VanillaDevTeam/MemePerps/commit/60818eedec8338d0e8f5a76018b15876e78820b6

Public

z PeckShield

SMART CONTRACT AUDIT REPORT

for

Vanilla Money/MarketMaker Vaults

Prepared By: Xiaomi Huang

PeckShield
April 22, 2025

1/17 PeckShield Audit Report #: 2025-074

contact@peckshield.com

Public

Document Properties

Client VanillaExchange

Title Smart Contract Audit Report
Target Vanilla Money/MarketMaker Vaults
Version 1.0

Author Xuxian Jiang

Auditors Matthew Jiang, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date Author(s) = Description
1.0 April 22, 2025 | Xuxian Jiang | Final Release
1.0-rc April 21, 2024 | Xuxian Jiang | Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang
+86 183 5897 7782
contact@peckshield.com

2/17 PeckShield Audit Report #: 2025-074

Public

Contents
1 Introduction 4
1.1 About Vanilla Money/MarketMaker Vaults 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Possibly Inconsistent UnStake Events in VanillaMarketMakerVault 11
3.2 Improved Order Creation/Settlement Logic in VanillaMoneyVault 12
3.3 Trust Issue Of Admin Keys 14
4 Conclusion 16
References 17

3/17 PeckShield Audit Report #: 2025-074

Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of
the Vanilla Money/MarketMaker Vaults contracts, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.

This document outlines our audit results.

1.1 About Vanilla Money/MarketMaker Vaults

This audit covers four specific Vanilla vaults contracts, i.e., VanillaMoneyVault, VanillaMoneyVaultV2,
VanillaMarketMakerVault, and VanillaMarketMakerVaultV2. The first two vaults are mainly used for
users to deposit and withdraw funds, as well as provide two order interfaces for users with BOT_ROLE
to operate. The last two act as a fund storage and token collateral. After the user places an
order, a portion of the user's deposit will be transferred to VanillaMarketMakeVault (V2). The user's
collateral can serve as a betting against the platform to earn interest. The basic information of

audited contracts is as follows:

Table 1.1: Basic Information of Audited Contracts

Item Description
Target | Vanilla Money/MarketMaker Vaults
Type | EVM Smart Contract
Language | Solidity
Audit Method | Whitebox
Latest Audit Report | April 22, 2025

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

4/17 PeckShield Audit Report #: 2025-074

Public

e https://github.com/VanillaDevTeam/PSC-Contract.git (3ddb000)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

e https://github.com/VanillaDevTeam/PSC-Contract.git (750cda2)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High High
°
S Medium
£

Low

Medium

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/17 PeckShield Audit Report #: 2025-074

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/17

PeckShield Audit Report #: 2025-074

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/17 PeckShield Audit Report #: 2025-074

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17

PeckShield Audit Report #: 2025-074

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of four vanilia vaults. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

Wl lo|l~r|NMNO|O
|
[

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions

of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2025-074

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity

vulnerabilities and 2 low-severity vulnerability.

Table 2.1: Key Vanilla Money/MarketMaker Vaults Audit Findings

ID Category Status
PVE-001 Low Possibly Inconsistent UnStake Events | Coding Practices | Resolved
in VanillaMarketMakerVault

PVE-002 | Medium | Improved Order Creation/Settlement | Business Logic Resolved
Logic in VanillaMoneyVault
PVE-003 | Medium | Trust Issue Of Admin Keys Security Features | Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2025-074

177
178
179
180
181
182
183

Public

3 Detailed Results

3.1 Possibly Inconsistent UnStake Events in
VanillaMarketMakerVault

e |D: PVE-001 e Target: VanillaMarketMakerVault
e Severity: Low e Category: Coding Practices [5]

o Likelihood: Low e CWE subcategory: CWE-1126 [1]
e Impact: Low

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events
can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the vanillaMarketMakerVault contract as an example. This contract
is designed to be a VanillaMarketMakerVault that allows users to stake/unstake their funds. While
examining the events that reflect the unstake operation, we notice the emitted important UnStake
event may not be consistent. In particular, The UnStake event has four parameters and the last
one indicates the respective pledgedFunds amount of the actual amount being transferred out. With
that, the following Unstake event (line 200) in partialUnstake() is incorrect (while the same vent in
unstake () is correct).

function partialUnstake (
uint256 amount

) external nonReentrant whenNotPaused {
uint256 balances = userInfo[_msgSender ()].amounts;
if (amount == amount > balances) {

revert VanillaMarketMakerVault__InvalidAmount ();

11/17 PeckShield Audit Report #: 2025-074

184
185
186
187
188
189
190
191
192
193

195
196
197

199
200
201
202
203
204
205
206

Public

uint256 shares = (amount * userInfo[_msgSender ()].shares) / balances;
uint256 amountToTransfer = calculateAmounts (shares);
if (slotl.cumulativeShares < shares)

revert VanillaMarketMakerVault__cumulativeSharesInsufficient ();
if (assetsManagement () < amountToTransfer)

revert VanillaMarketMakerVault__InsufficientVaultBalance();

slotl.pledgedFunds -= amount;

slotl.cumulativeShares -= shares;

userInfo[_msgSender ()].shares -= shares;

userInfo[_msgSender ()].amounts -= amount;

if (userInfol[_msgSender ()].amounts == 0) {
userNumber -= 1;

}

IERC20(slotl.assetId) .safeTransfer (_msgSender (), amountToTransfer);
emit UnStake (

_msgSender (),

amountToTransfer,

shares,

userInfo[_msgSender ()].amounts

Listing 3.1: vanillaMarketMakerVault: :partialUnstake ()

Recommendation Properly emit the Unstake event when an user intends to unstake the staked

funds.

Status This issue has been fixed in the following commit: 750cda2.

3.2

Improved Order Creation/Settlement Logic in

VanillaMoneyVault
e |ID: PVE-002 e Target: VanillaMoneyVault
e Severity: Medium e Category: Business Logic [6]
e Likelihood: Medium e CWE subcategory: CWE-770 [3]
e Impact: Medium

Description

The VanillaMoneyVault contract allows the privileged bot accounts to place/settle user orders. In the

process of examining the order creation and settlement logic, we notice current implementation may

be improved.

12/17

PeckShield Audit Report #: 2025-074

https://github.com/VanillaDevTeam/PSC-Contract/commit/750cda2

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

Public

function createOrder(
CreateOrderParams calldata params
) external override onlyRole(BOT_ROLE) {
if (balances[params.account] < params.amount)
revert VanillaMoneyVault__PledgeFundInsufficient ();
if (orderInfo[params.orderId].isExistence)
revert VanillaMoneyVault__AlreadyExistOrder (params.orderId);
orderInfo[params.orderId] = OrderInfo ({
owner: params.account,
isSettlement: false,
isExistence: true,

amount: params.amount

¥ 8
balances [params.account] -= params.amount;
if (slotO.platformFeeAccount != address(0)) {
if (params.fee > 0) {
balances [params.account] -= params.fee;
IERC20(slot0.assetId).safeTransfer (
slotO.platformFeeAccount,
params. fee
)
emit PlatformCollectFee(slotO.platformFeeAccount, params.fee);
}
}

emit CreateOrder (params.account, params.orderId, params);

LiSth1g 3.2: VanillaMoneyVault::createOrder()

To elaborate, we show above the implementation of the related createOrder() routine. When
creating an order, there is a need to ensure the user funds are sufficient to cover the order amount as
well as possible fee. However, current implementation only validates the coverage of order amount,
not the fee. Also, the given input parameters are defined in CreateOrderParams, which contains a
number of unused member fields and unused ones can be simplified removed.

function settleOrder (
bytes32 orderlId,
uint256 revenue,
uint256 fee
) public override onlyRole(BOT_ROLE) {
if (orderInfo[orderId].isSettlement)
revert VanillaMoneyVault__AlreadySettleOrder (orderId);
orderInfo[orderId].isSettlement = true;
address account = orderInfo[orderId].owner;
// transfer
IERC20(slot0.assetId).safeTransfer (
slotO.marketMakerVault,
orderInfo[orderId].amount

) g

IVanillaMarketMakerVault (slot0O.marketMakerVault).settlement (

13/17 PeckShield Audit Report #: 2025-074

150
151
152
153
154
155
156
157
158
159
160

106
107
108
109
110
111
112
113
114
115

Public

account ,
revenue + fee
)
balances [account] += revenue;
if (fee > 0) {
IERC20(slot0.assetId).safeTransfer (slotO.profitSharingAccount, fee);
emit ProfitSharingCollectFee(slotO.profitSharingAccount, fee);

emit SettleOrder (account, orderId, revenue);

Listing 3.3: vanillaMoneyVault: :settleOrder ()

Similarly, the settleOrder() routine in the same contract can also be improved by validating the

given order is a valid one, i.e., require (orderInfo[params.orderId].isExistence);.

Recommendation Revisit the above-mentioned routines to ensure the user orders are properly

created and settled.

Status This issue has been fixed in the following commit: 750cda2.

3.3 Trust Issue Of Admin Keys

e |D: PVE-003 e Target: Multiple Contracts

* Severity: Medium o Category: Security Features [4]
* Likelihood: Medium e CWE subcategory: CWE-287 [2]
e Impact: Medium

Description

In the audited vanilla vaults, there is a privileged account (with the ADMIN_ROLE/DEFAULT_ADMIN_ROLE
role) that plays a critical role in governing and regulating the vault-wide operations (e.g., assign
BOT roles, pause/unpause the vault, and settle orders). In the following, we show the representative
functions potentially affected by the privilege of the privileged account.

function createOrder(
CreateOrderParams calldata params
) external override onlyRole(BOT_ROLE) {

function settleOrder (
bytes32 orderlId,
uint256 revenue,
uint256 fee

14/17 PeckShield Audit Report #: 2025-074

https://github.com/VanillaDevTeam/PSC-Contract/commit/750cda2

116
117
118
119

Public

) public override onlyRole (BOT_ROLE) {

}

Listing 3.4: Example Privileged Operations in vanillaMoneyVault

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a pao-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive vault
parameters, which directly undermines the assumption of the vault design.

In the meantime, the vault contract makes use of the proxy contract to allow for future upgrades.

The upgrade is a privileged operation, which also falls in this trust issue on the admin key.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to

manage the privileged account.

15/17 PeckShield Audit Report #: 2025-074

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of four specific Vanilla vaults contracts,
i.e., VanillaMoneyVault, VanillaMoneyVaultV2, VanillaMarketMakerVault, and VanillaMarketMakerVaultV2
. The first two vaults are mainly used for users to deposit and withdraw funds, as well as provide
two order interfaces for users with BOT_ROLE to operate. The last two act as a fund storage and
token collateral. After the user places an order, a portion of the user's deposit will be transferred to
VanillaMarketMakeVault (V2). The user’s collateral can serve as a betting against the platform to earn
interest. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or

suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

16/17 PeckShield Audit Report #: 2025-074

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.
org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.
org/data/definitions/770.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.
[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2025-074

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	DogScan Security Audit Report
	1. Executive Summary
	2. Audit Scope
	3. Audit Methodology
	4. Findings Summary
	5. Detailed Findings
	[L-01] Trading functions lack slippage protection, potentially affecting user trading experience (Low)

	6. Architecture and Design Recommendations
	7. Conclusion
	8. Disclaimer

	Audit Details
	Executive Summary
	Audit Scope
	Audit Methodology
	Findings Summary
	Detailed Findings
	[L-01] Centralization risk: Privileged borrower role design poses potential risks (Low)
	[L-02] Precision loss during deposits may lead to minor user fund loss (Low)

	Architecture and Design Recommendations
	Conclusion
	Disclaimer

	Introduction
	About Vanilla Money/MarketMaker Vaults
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possibly Inconsistent UnStake Events in VanillaMarketMakerVault
	Improved Order Creation/Settlement Logic in VanillaMoneyVault
	Trust Issue Of Admin Keys

	Conclusion
	References

